Cargando…
Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl
Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366255/ https://www.ncbi.nlm.nih.gov/pubmed/25790255 http://dx.doi.org/10.1371/journal.pone.0118349 |
_version_ | 1782362346896752640 |
---|---|
author | Hagy, Heath M. Kaminski, Richard M. |
author_facet | Hagy, Heath M. Kaminski, Richard M. |
author_sort | Hagy, Heath M. |
collection | PubMed |
description | Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and suggest scientists reevaluate assumptions of these models used to guide habitat conservation. |
format | Online Article Text |
id | pubmed-4366255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43662552015-03-23 Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl Hagy, Heath M. Kaminski, Richard M. PLoS One Research Article Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and suggest scientists reevaluate assumptions of these models used to guide habitat conservation. Public Library of Science 2015-03-19 /pmc/articles/PMC4366255/ /pubmed/25790255 http://dx.doi.org/10.1371/journal.pone.0118349 Text en © 2015 Hagy, Kaminski http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hagy, Heath M. Kaminski, Richard M. Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl |
title | Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl |
title_full | Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl |
title_fullStr | Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl |
title_full_unstemmed | Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl |
title_short | Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl |
title_sort | determination of foraging thresholds and effects of application on energetic carrying capacity for waterfowl |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366255/ https://www.ncbi.nlm.nih.gov/pubmed/25790255 http://dx.doi.org/10.1371/journal.pone.0118349 |
work_keys_str_mv | AT hagyheathm determinationofforagingthresholdsandeffectsofapplicationonenergeticcarryingcapacityforwaterfowl AT kaminskirichardm determinationofforagingthresholdsandeffectsofapplicationonenergeticcarryingcapacityforwaterfowl |