Cargando…

The role of microRNAs in cellular senescence and age-related conditions of cartilage and bone: A review

BACKGROUND AND PURPOSE: We reviewed the current state of research on microRNAs in age-related diseases in cartilage and bone. METHODS: PubMed searches were conducted using separate terms to retrieve articles on (1) the role of microRNAs on aging and tissue degeneration, (2) specific microRNAs that i...

Descripción completa

Detalles Bibliográficos
Autores principales: Weilner, Sylvia, Grillari-Voglauer, Regina, Redl, Heinz, Grillari, Johannes, Nau, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Informa Healthcare 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366666/
https://www.ncbi.nlm.nih.gov/pubmed/25175665
http://dx.doi.org/10.3109/17453674.2014.957079
Descripción
Sumario:BACKGROUND AND PURPOSE: We reviewed the current state of research on microRNAs in age-related diseases in cartilage and bone. METHODS: PubMed searches were conducted using separate terms to retrieve articles on (1) the role of microRNAs on aging and tissue degeneration, (2) specific microRNAs that influence cellular and organism senescence, (3) microRNAs in age-related musculoskeletal conditions, and (4) the diagnostic and therapeutic potential of microRNAs in age-related musculoskeletal conditions. RESULTS: An increasing number of studies have identified microRNAs associated with cellular aging and tissue degeneration. Specifically in regard to frailty, microRNAs have been found to influence the onset and course of age-related musculoskeletal conditions such as osteoporosis, osteoarthritis, and posttraumatic arthritis. Both intracellular and extracellular microRNAs may be suitable to function as diagnostic biomarkers. In particular INTERPRETATION: The research data currently available suggest that microRNAs play an important role in orchestrating age-related processes and conditions of the musculoskeletal system. Further research may help to improve our understanding of the complexity of these processes at the cellular and extracellular level. The option to develop microRNA biomarkers and novel therapeutic agents for the degenerating diseases of bone and cartilage appears to be promising.