Cargando…
Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA) and Spectral Discrimination Measurements
Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a pr...
Autores principales: | Song, Ahram, Chang, Anjin, Choi, Jaewan, Choi, Seokkeun, Kim, Yongil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367322/ https://www.ncbi.nlm.nih.gov/pubmed/25625907 http://dx.doi.org/10.3390/s150202593 |
Ejemplares similares
-
Directly Estimating Endmembers for Compressive Hyperspectral Images
por: Xu, Hongwei, et al.
Publicado: (2015) -
The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data
por: Zhang, Jinkai, et al.
Publicado: (2008) -
Real-time progressive hyperspectral image processing: endmember finding and anomaly detection
por: Chang, Chein-I
Publicado: (2016) -
Endmember Learning with K-Means through SCD Model in Hyperspectral Scene Reconstructions
por: Chatterjee, Ayan, et al.
Publicado: (2019) -
Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability
por: Brezini, Salah Eddine, et al.
Publicado: (2023)