Cargando…
Anomaly Detection Based on Sensor Data in Petroleum Industry Applications
Anomaly detection is the problem of finding patterns in data that do not conform to an a priori expected behavior. This is related to the problem in which some samples are distant, in terms of a given metric, from the rest of the dataset, where these anomalous samples are indicated as outliers. Anom...
Autores principales: | Martí, Luis, Sanchez-Pi, Nayat, Molina, José Manuel, Garcia, Ana Cristina Bicharra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367333/ https://www.ncbi.nlm.nih.gov/pubmed/25633599 http://dx.doi.org/10.3390/s150202774 |
Ejemplares similares
-
A Graph Neural Network with Spatio-Temporal Attention for Multi-Sources Time Series Data: An Application to Frost Forecast †
por: Lira, Hernan, et al.
Publicado: (2022) -
Applications of artificial intelligence techniques in the petroleum industry
por: Hemmat-Sarapardeh, Abdolhossein, et al.
Publicado: (2020) -
The amazing petroleum industry
por: Kalichevsky, Vladimir Anatole, 1895-
Publicado: (1943) -
Tamper Detection in Industrial Sensors: An Approach Based on Anomaly Detection
por: Villegas-Ch, William, et al.
Publicado: (2023) -
Low-Cost Electromagnetic Split-Ring Resonator Sensor System for the Petroleum Industry
por: Rivera-Lavado, Alejandro, et al.
Publicado: (2022)