Cargando…

Influence of Action-Effect Associations Acquired by Ideomotor Learning on Imitation

According to the ideomotor theory, actions are represented in terms of their perceptual effects, offering a solution for the correspondence problem of imitation (how to translate the observed action into a corresponding motor output). This effect-based coding of action is assumed to be acquired thro...

Descripción completa

Detalles Bibliográficos
Autores principales: Bunlon, Frédérique, Marshall, Peter J., Quandt, Lorna C., Bouquet, Cedric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368755/
https://www.ncbi.nlm.nih.gov/pubmed/25793755
http://dx.doi.org/10.1371/journal.pone.0121617
Descripción
Sumario:According to the ideomotor theory, actions are represented in terms of their perceptual effects, offering a solution for the correspondence problem of imitation (how to translate the observed action into a corresponding motor output). This effect-based coding of action is assumed to be acquired through action-effect learning. Accordingly, performing an action leads to the integration of the perceptual codes of the action effects with the motor commands that brought them about. While ideomotor theory is invoked to account for imitation, the influence of action-effect learning on imitative behavior remains unexplored. In two experiments, imitative performance was measured in a reaction time task following a phase of action-effect acquisition. During action-effect acquisition, participants freely executed a finger movement (index or little finger lifting), and then observed a similar (compatible learning) or a different (incompatible learning) movement. In Experiment 1, finger movements of left and right hands were presented as action-effects during acquisition. In Experiment 2, only right-hand finger movements were presented during action-effect acquisition and in the imitation task the observed hands were oriented orthogonally to participants’ hands in order to avoid spatial congruency effects. Experiments 1 and 2 showed that imitative performance was improved after compatible learning, compared to incompatible learning. In Experiment 2, although action-effect learning involved perception of finger movements of right hand only, imitative capabilities of right- and left-hand finger movements were equally affected. These results indicate that an observed movement stimulus processed as the effect of an action can later prime execution of that action, confirming the ideomotor approach to imitation. We further discuss these findings in relation to previous studies of action-effect learning and in the framework of current ideomotor approaches to imitation.