Cargando…

Acute Nicotine Administration Increases BOLD fMRI Signal in Brain Regions Involved in Reward Signaling and Compulsive Drug Intake in Rats

BACKGROUND: Acute nicotine administration potentiates brain reward function and enhances motor and cognitive function. These studies investigated which brain areas are being activated by a wide range of doses of nicotine, and if this is diminished by pretreatment with the nonselective nicotinic rece...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruijnzeel, Adrie W., Alexander, Jon C., Perez, Pablo D., Bauzo-Rodriguez, Rayna, Hall, Gabrielle, Klausner, Rachel, Guerra, Valerie, Zeng, Huadong, Igari, Moe, Febo, Marcelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368882/
https://www.ncbi.nlm.nih.gov/pubmed/25552431
http://dx.doi.org/10.1093/ijnp/pyu011
Descripción
Sumario:BACKGROUND: Acute nicotine administration potentiates brain reward function and enhances motor and cognitive function. These studies investigated which brain areas are being activated by a wide range of doses of nicotine, and if this is diminished by pretreatment with the nonselective nicotinic receptor antagonist mecamylamine. METHODS: Drug-induced changes in brain activity were assessed by measuring changes in the blood oxygen level dependent (BOLD) signal using an 11.1-Tesla magnetic resonance scanner. In the first experiment, nicotine naïve rats were mildly anesthetized and the effect of nicotine (0.03–0.6mg/kg) on the BOLD signal was investigated for 10min. In the second experiment, the effect of mecamylamine on nicotine-induced brain activity was investigated. RESULTS: A high dose of nicotine increased the BOLD signal in brain areas implicated in reward signaling, such as the nucleus accumbens shell and the prelimbic area. Nicotine also induced a dose-dependent increase in the BOLD signal in the striato-thalamo-orbitofrontal circuit, which plays a role in compulsive drug intake, and in the insular cortex, which contributes to nicotine craving and relapse. In addition, nicotine induced a large increase in the BOLD signal in motor and somatosensory cortices. Mecamylamine alone did not affect the BOLD signal in most brain areas, but induced a negative BOLD response in cortical areas, including insular, motor, and somatosensory cortices. Pretreatment with mecamylamine completely blocked the nicotine-induced increase in the BOLD signal. CONCLUSIONS: These studies demonstrate that acute nicotine administration activates brain areas that play a role in reward signaling, compulsive behavior, and motor and cognitive function.