Cargando…
GROM-RD: resolving genomic biases to improve read depth detection of copy number variants
Amplifications or deletions of genome segments, known as copy number variants (CNVs), have been associated with many diseases. Read depth analysis of next-generation sequencing (NGS) is an essential method of detecting CNVs. However, genome read coverage is frequently distorted by various biases of...
Autores principales: | Smith, Sean D., Kawash, Joseph K., Grigoriev, Andrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369336/ https://www.ncbi.nlm.nih.gov/pubmed/25802807 http://dx.doi.org/10.7717/peerj.836 |
Ejemplares similares
-
Lightning-fast genome variant detection with GROM
por: Smith, Sean D, et al.
Publicado: (2017) -
Improving detection of copy-number variation by simultaneous bias correction and read-depth segmentation
por: Szatkiewicz, Jin P., et al.
Publicado: (2013) -
Using network clustering to predict copy number variations associated with health disparities
por: Jiang, Yi, et al.
Publicado: (2015) -
ARIADNA: machine learning method for ancient DNA variant discovery
por: Kawash, Joseph K, et al.
Publicado: (2018) -
CNV-P: a machine-learning framework for predicting high confident copy number variations
por: Wang, Taifu, et al.
Publicado: (2021)