Cargando…

Application of centrality measures in the identification of critical genes in diabetes mellitus

The connectivity of a protein and its structure is related to its functional properties. Many experimental approaches have been employed for the identification of Diabetes Mellitus (DM) associated candidate genes. Therefore, it is of interest to use var ious graph centrality measures integrated with...

Descripción completa

Detalles Bibliográficos
Autores principales: Ambedkar, Chintagunta, Reddi, Kiran Kumar, Muppalaneni, Naresh Babu, Kalyani, Duggineni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369684/
https://www.ncbi.nlm.nih.gov/pubmed/25848169
http://dx.doi.org/10.6026/97320630011090
Descripción
Sumario:The connectivity of a protein and its structure is related to its functional properties. Many experimental approaches have been employed for the identification of Diabetes Mellitus (DM) associated candidate genes. Therefore, it is of interest to use var ious graph centrality measures integrated with the genes associated with the human Diabetes Mellitus network for the identification of potential targets. We used 2728 genes known to cause Diabetes Mellitus from Jensenlab (Novo Nordisk Foundation Center for Protein Research, Denmark) for this analysis. A protein-protein interaction network was further constructed using a tool Centralities in Biological Networks (CentiBiN) with 1020 nodes after eliminating the duplicates, parallel edges, self -loop edges and unknown Human Protein Reference Database (HPRD) IDS. We used fourteen centralities measures which are useful in identifying the structural characteristic of individuals in the network. The results of the centrality measures are highly correlated. Thus, we identified genes that are critically associated with DM. We further report the top ten genes of all fourteen centrality measures for further consideration as targets for DM.