Cargando…
Permeability-controlled optical modulator with Tri-gate metamaterial: control of permeability on InP-based photonic integration platform
Metamaterials are artificially structured materials that can produce innovative optical functionalities such as negative refractive index, invisibility cloaking, and super-resolution imaging. Combining metamaterials with semiconductors enables us to develop novel optoelectronic devices based on the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369730/ https://www.ncbi.nlm.nih.gov/pubmed/25797041 http://dx.doi.org/10.1038/srep08985 |
Sumario: | Metamaterials are artificially structured materials that can produce innovative optical functionalities such as negative refractive index, invisibility cloaking, and super-resolution imaging. Combining metamaterials with semiconductors enables us to develop novel optoelectronic devices based on the new concept of operation. Here we report the first experimental demonstration of a permeability-controlled waveguide optical modulator consisting of an InGaAsP/InP Mach-Zehnder interferometer with ‘tri-gate’ metamaterial attached on its arms. The tri-gate metamaterial consists of metal resonator arrays and triple-gate field effect elements. It changes its permeability with a change in the controlling gate voltage, thereby changing the refractive index of the interferometer arm to switch the modulator with an extinction ratio of 6.9 dB at a wavelength of 1.55 μm. The result shows the feasibility of InP-based photonic integrated devices that can produce new functions by controlling their permeability as well as their permittivity. |
---|