Cargando…
A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification
Gene expression data typically are large, complex, and highly noisy. Their dimension is high with several thousand genes (i.e., features) but with only a limited number of observations (i.e., samples). Although the classical principal component analysis (PCA) method is widely used as a first standar...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370236/ https://www.ncbi.nlm.nih.gov/pubmed/25838836 http://dx.doi.org/10.1155/2015/370640 |
_version_ | 1782362848994787328 |
---|---|
author | Pamukçu, Esra Bozdogan, Hamparsum Çalık, Sinan |
author_facet | Pamukçu, Esra Bozdogan, Hamparsum Çalık, Sinan |
author_sort | Pamukçu, Esra |
collection | PubMed |
description | Gene expression data typically are large, complex, and highly noisy. Their dimension is high with several thousand genes (i.e., features) but with only a limited number of observations (i.e., samples). Although the classical principal component analysis (PCA) method is widely used as a first standard step in dimension reduction and in supervised and unsupervised classification, it suffers from several shortcomings in the case of data sets involving undersized samples, since the sample covariance matrix degenerates and becomes singular. In this paper we address these limitations within the context of probabilistic PCA (PPCA) by introducing and developing a new and novel approach using maximum entropy covariance matrix and its hybridized smoothed covariance estimators. To reduce the dimensionality of the data and to choose the number of probabilistic PCs (PPCs) to be retained, we further introduce and develop celebrated Akaike's information criterion (AIC), consistent Akaike's information criterion (CAIC), and the information theoretic measure of complexity (ICOMP) criterion of Bozdogan. Six publicly available undersized benchmark data sets were analyzed to show the utility, flexibility, and versatility of our approach with hybridized smoothed covariance matrix estimators, which do not degenerate to perform the PPCA to reduce the dimension and to carry out supervised classification of cancer groups in high dimensions. |
format | Online Article Text |
id | pubmed-4370236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-43702362015-04-02 A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification Pamukçu, Esra Bozdogan, Hamparsum Çalık, Sinan Comput Math Methods Med Research Article Gene expression data typically are large, complex, and highly noisy. Their dimension is high with several thousand genes (i.e., features) but with only a limited number of observations (i.e., samples). Although the classical principal component analysis (PCA) method is widely used as a first standard step in dimension reduction and in supervised and unsupervised classification, it suffers from several shortcomings in the case of data sets involving undersized samples, since the sample covariance matrix degenerates and becomes singular. In this paper we address these limitations within the context of probabilistic PCA (PPCA) by introducing and developing a new and novel approach using maximum entropy covariance matrix and its hybridized smoothed covariance estimators. To reduce the dimensionality of the data and to choose the number of probabilistic PCs (PPCs) to be retained, we further introduce and develop celebrated Akaike's information criterion (AIC), consistent Akaike's information criterion (CAIC), and the information theoretic measure of complexity (ICOMP) criterion of Bozdogan. Six publicly available undersized benchmark data sets were analyzed to show the utility, flexibility, and versatility of our approach with hybridized smoothed covariance matrix estimators, which do not degenerate to perform the PPCA to reduce the dimension and to carry out supervised classification of cancer groups in high dimensions. Hindawi Publishing Corporation 2015 2015-02-19 /pmc/articles/PMC4370236/ /pubmed/25838836 http://dx.doi.org/10.1155/2015/370640 Text en Copyright © 2015 Esra Pamukçu et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Pamukçu, Esra Bozdogan, Hamparsum Çalık, Sinan A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification |
title | A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification |
title_full | A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification |
title_fullStr | A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification |
title_full_unstemmed | A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification |
title_short | A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification |
title_sort | novel hybrid dimension reduction technique for undersized high dimensional gene expression data sets using information complexity criterion for cancer classification |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370236/ https://www.ncbi.nlm.nih.gov/pubmed/25838836 http://dx.doi.org/10.1155/2015/370640 |
work_keys_str_mv | AT pamukcuesra anovelhybriddimensionreductiontechniqueforundersizedhighdimensionalgeneexpressiondatasetsusinginformationcomplexitycriterionforcancerclassification AT bozdoganhamparsum anovelhybriddimensionreductiontechniqueforundersizedhighdimensionalgeneexpressiondatasetsusinginformationcomplexitycriterionforcancerclassification AT calıksinan anovelhybriddimensionreductiontechniqueforundersizedhighdimensionalgeneexpressiondatasetsusinginformationcomplexitycriterionforcancerclassification AT pamukcuesra novelhybriddimensionreductiontechniqueforundersizedhighdimensionalgeneexpressiondatasetsusinginformationcomplexitycriterionforcancerclassification AT bozdoganhamparsum novelhybriddimensionreductiontechniqueforundersizedhighdimensionalgeneexpressiondatasetsusinginformationcomplexitycriterionforcancerclassification AT calıksinan novelhybriddimensionreductiontechniqueforundersizedhighdimensionalgeneexpressiondatasetsusinginformationcomplexitycriterionforcancerclassification |