Cargando…
A Novel Hybrid Dimension Reduction Technique for Undersized High Dimensional Gene Expression Data Sets Using Information Complexity Criterion for Cancer Classification
Gene expression data typically are large, complex, and highly noisy. Their dimension is high with several thousand genes (i.e., features) but with only a limited number of observations (i.e., samples). Although the classical principal component analysis (PCA) method is widely used as a first standar...
Autores principales: | Pamukçu, Esra, Bozdogan, Hamparsum, Çalık, Sinan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370236/ https://www.ncbi.nlm.nih.gov/pubmed/25838836 http://dx.doi.org/10.1155/2015/370640 |
Ejemplares similares
-
Segmentation of High Dimensional Time-Series Data Using Mixture of Sparse Principal Component Regression Model with Information Complexity
por: Sun, Yaojin, et al.
Publicado: (2020) -
New bandwidth selection criterion for Kernel PCA: Approach to dimensionality reduction and classification problems
por: Thomas, Minta, et al.
Publicado: (2014) -
Effects of Different Undersizing Site Preparations on Implant Stability
por: Lemos, Bernardo Ferreira, et al.
Publicado: (2020) -
International Conference on Measurement and Multivariate Analysis
por: Nishisato, Shizuhiko, et al.
Publicado: (2002) -
Proceedings of the 1st US/Japan Conference on the Frontiers of Statistical Modeling : An Informational Approach
por: Bozdogan, Hamparsum, et al.
Publicado: (1994)