Cargando…

Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice

A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Bach, Eva C., Halmos, Katalin Cs., Smith, Bret N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370733/
https://www.ncbi.nlm.nih.gov/pubmed/25799386
http://dx.doi.org/10.1371/journal.pone.0121022
_version_ 1782362927938928640
author Bach, Eva C.
Halmos, Katalin Cs.
Smith, Bret N.
author_facet Bach, Eva C.
Halmos, Katalin Cs.
Smith, Bret N.
author_sort Bach, Eva C.
collection PubMed
description A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex contributes to increased glutamate release in the dorsal motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyperglycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA receptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglycemic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control and diabetic mice, suggesting that differential effects on glutamate release were due to altered NMDA function in the soma-dendritic membrane of intact afferent neurons. Application of NMDA (300 μM) resulted in greater inward current and current density in NTS neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein and message in the dorsal vagal complex were not different between the two groups. Enhanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia. Functional augmentation of NMDA-mediated responses may serve as a physiological counter-regulatory mechanism to control pathological disturbances of homeostatic autonomic function in type 1 diabetes.
format Online
Article
Text
id pubmed-4370733
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-43707332015-04-04 Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice Bach, Eva C. Halmos, Katalin Cs. Smith, Bret N. PLoS One Research Article A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex contributes to increased glutamate release in the dorsal motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyperglycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA receptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglycemic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control and diabetic mice, suggesting that differential effects on glutamate release were due to altered NMDA function in the soma-dendritic membrane of intact afferent neurons. Application of NMDA (300 μM) resulted in greater inward current and current density in NTS neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein and message in the dorsal vagal complex were not different between the two groups. Enhanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia. Functional augmentation of NMDA-mediated responses may serve as a physiological counter-regulatory mechanism to control pathological disturbances of homeostatic autonomic function in type 1 diabetes. Public Library of Science 2015-03-23 /pmc/articles/PMC4370733/ /pubmed/25799386 http://dx.doi.org/10.1371/journal.pone.0121022 Text en © 2015 Bach et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Bach, Eva C.
Halmos, Katalin Cs.
Smith, Bret N.
Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice
title Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice
title_full Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice
title_fullStr Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice
title_full_unstemmed Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice
title_short Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice
title_sort enhanced nmda receptor-mediated modulation of excitatory neurotransmission in the dorsal vagal complex of streptozotocin-treated, chronically hyperglycemic mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370733/
https://www.ncbi.nlm.nih.gov/pubmed/25799386
http://dx.doi.org/10.1371/journal.pone.0121022
work_keys_str_mv AT bachevac enhancednmdareceptormediatedmodulationofexcitatoryneurotransmissioninthedorsalvagalcomplexofstreptozotocintreatedchronicallyhyperglycemicmice
AT halmoskatalincs enhancednmdareceptormediatedmodulationofexcitatoryneurotransmissioninthedorsalvagalcomplexofstreptozotocintreatedchronicallyhyperglycemicmice
AT smithbretn enhancednmdareceptormediatedmodulationofexcitatoryneurotransmissioninthedorsalvagalcomplexofstreptozotocintreatedchronicallyhyperglycemicmice