Cargando…
Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations
We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mix...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370746/ https://www.ncbi.nlm.nih.gov/pubmed/25799555 http://dx.doi.org/10.1371/journal.pone.0120752 |
_version_ | 1782362931094093824 |
---|---|
author | Fraker, Michael E. Anderson, Eric J. Brodnik, Reed M. Carreon-Martinez, Lucia DeVanna, Kristen M. Fryer, Brian J. Heath, Daniel D. Reichert, Julie M. Ludsin, Stuart A. |
author_facet | Fraker, Michael E. Anderson, Eric J. Brodnik, Reed M. Carreon-Martinez, Lucia DeVanna, Kristen M. Fryer, Brian J. Heath, Daniel D. Reichert, Julie M. Ludsin, Stuart A. |
author_sort | Fraker, Michael E. |
collection | PubMed |
description | We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mixed populations with a particle-tracking model to retrace likely dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our approach, we focus on western Lake Erie’s yellow perch (Perca flavescens) population during 2006–2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles as natural tags. Particle backtracking showed that not all larvae collected near a presumed hatching location may have originated there, owing to passive drift during the larval stage that was influenced by strong river- and wind-driven water circulation. Re-assigning larvae to their most probable hatching site (based on probabilistic dispersal trajectories from the particle backtracking model) improved the use of genetics and otolith microchemistry to discriminate among local breeding subpopulations. This enhancement, in turn, altered (and likely improved) the estimated contributions of each breeding subpopulation to the mixed population of juvenile recruits. Our findings indicate that particle backtracking can complement existing tools used to identify the origin of individuals in mixed populations, especially in flow-dominated systems. |
format | Online Article Text |
id | pubmed-4370746 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-43707462015-04-04 Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations Fraker, Michael E. Anderson, Eric J. Brodnik, Reed M. Carreon-Martinez, Lucia DeVanna, Kristen M. Fryer, Brian J. Heath, Daniel D. Reichert, Julie M. Ludsin, Stuart A. PLoS One Research Article We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mixed populations with a particle-tracking model to retrace likely dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our approach, we focus on western Lake Erie’s yellow perch (Perca flavescens) population during 2006–2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles as natural tags. Particle backtracking showed that not all larvae collected near a presumed hatching location may have originated there, owing to passive drift during the larval stage that was influenced by strong river- and wind-driven water circulation. Re-assigning larvae to their most probable hatching site (based on probabilistic dispersal trajectories from the particle backtracking model) improved the use of genetics and otolith microchemistry to discriminate among local breeding subpopulations. This enhancement, in turn, altered (and likely improved) the estimated contributions of each breeding subpopulation to the mixed population of juvenile recruits. Our findings indicate that particle backtracking can complement existing tools used to identify the origin of individuals in mixed populations, especially in flow-dominated systems. Public Library of Science 2015-03-23 /pmc/articles/PMC4370746/ /pubmed/25799555 http://dx.doi.org/10.1371/journal.pone.0120752 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Fraker, Michael E. Anderson, Eric J. Brodnik, Reed M. Carreon-Martinez, Lucia DeVanna, Kristen M. Fryer, Brian J. Heath, Daniel D. Reichert, Julie M. Ludsin, Stuart A. Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations |
title | Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations |
title_full | Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations |
title_fullStr | Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations |
title_full_unstemmed | Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations |
title_short | Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations |
title_sort | particle backtracking improves breeding subpopulation discrimination and natal-source identification in mixed populations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370746/ https://www.ncbi.nlm.nih.gov/pubmed/25799555 http://dx.doi.org/10.1371/journal.pone.0120752 |
work_keys_str_mv | AT frakermichaele particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT andersonericj particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT brodnikreedm particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT carreonmartinezlucia particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT devannakristenm particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT fryerbrianj particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT heathdanield particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT reichertjuliem particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations AT ludsinstuarta particlebacktrackingimprovesbreedingsubpopulationdiscriminationandnatalsourceidentificationinmixedpopulations |