Cargando…
On linear combinations of units with bounded coefficients and double-base digit expansions
Let [Formula: see text] be the maximal order of a number field. Belcher showed in the 1970s that every algebraic integer in [Formula: see text] is the sum of pairwise distinct units, if the unit equation [Formula: see text] has a non-trivial solution [Formula: see text]. We generalize this result an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370826/ https://www.ncbi.nlm.nih.gov/pubmed/25814773 http://dx.doi.org/10.1007/s00605-012-0443-4 |
Sumario: | Let [Formula: see text] be the maximal order of a number field. Belcher showed in the 1970s that every algebraic integer in [Formula: see text] is the sum of pairwise distinct units, if the unit equation [Formula: see text] has a non-trivial solution [Formula: see text]. We generalize this result and give applications to signed double-base digit expansions. |
---|