Cargando…

The extent of the stop coannihilation strip

Many supersymmetric models such as the constrained minimal supersymmetric extension of the Standard Model (CMSSM) feature a strip in parameter space where the lightest neutralino [Formula: see text] is identified as the lightest supersymmetric particle, the lighter stop squark [Formula: see text] is...

Descripción completa

Detalles Bibliográficos
Autores principales: Ellis, John, Olive, Keith A., Zheng, Jiaming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370881/
https://www.ncbi.nlm.nih.gov/pubmed/25814902
http://dx.doi.org/10.1140/epjc/s10052-014-2947-7
Descripción
Sumario:Many supersymmetric models such as the constrained minimal supersymmetric extension of the Standard Model (CMSSM) feature a strip in parameter space where the lightest neutralino [Formula: see text] is identified as the lightest supersymmetric particle, the lighter stop squark [Formula: see text] is the next-to-lightest supersymmetric particle (NLSP), and the relic [Formula: see text] cold dark matter density is brought into the range allowed by astrophysics and cosmology by coannihilation with the lighter stop squark [Formula: see text] NLSP. We calculate the stop coannihilation strip in the CMSSM, incorporating Sommerfeld enhancement effects, and we explore the relevant phenomenological constraints and phenomenological signatures. In particular, we show that the [Formula: see text] may weigh several TeV, and its lifetime may be in the nanosecond range, features that are more general than the specific CMSSM scenarios that we study in this paper.