Cargando…
2-Supernilpotent Mal’cev algebras
In this note we prove that a Mal’cev algebra is 2-supernilpotent ([1, 1, 1] = 0) if and only if it is polynomially equivalent to a special expanded group. This generalizes Gumm’s result that a Mal’cev algebra is abelian if and only if it is polynomially equivalent to a module over a ring.
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371078/ https://www.ncbi.nlm.nih.gov/pubmed/25814774 http://dx.doi.org/10.1007/s00605-013-0541-y |
_version_ | 1782362980309008384 |
---|---|
author | Mudrinski, Nebojša |
author_facet | Mudrinski, Nebojša |
author_sort | Mudrinski, Nebojša |
collection | PubMed |
description | In this note we prove that a Mal’cev algebra is 2-supernilpotent ([1, 1, 1] = 0) if and only if it is polynomially equivalent to a special expanded group. This generalizes Gumm’s result that a Mal’cev algebra is abelian if and only if it is polynomially equivalent to a module over a ring. |
format | Online Article Text |
id | pubmed-4371078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-43710782015-03-24 2-Supernilpotent Mal’cev algebras Mudrinski, Nebojša Mon Hefte Math Article In this note we prove that a Mal’cev algebra is 2-supernilpotent ([1, 1, 1] = 0) if and only if it is polynomially equivalent to a special expanded group. This generalizes Gumm’s result that a Mal’cev algebra is abelian if and only if it is polynomially equivalent to a module over a ring. Springer Vienna 2013-08-31 2013 /pmc/articles/PMC4371078/ /pubmed/25814774 http://dx.doi.org/10.1007/s00605-013-0541-y Text en © The Author(s) 2013 https://creativecommons.org/licenses/by/2.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Article Mudrinski, Nebojša 2-Supernilpotent Mal’cev algebras |
title | 2-Supernilpotent Mal’cev algebras |
title_full | 2-Supernilpotent Mal’cev algebras |
title_fullStr | 2-Supernilpotent Mal’cev algebras |
title_full_unstemmed | 2-Supernilpotent Mal’cev algebras |
title_short | 2-Supernilpotent Mal’cev algebras |
title_sort | 2-supernilpotent mal’cev algebras |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371078/ https://www.ncbi.nlm.nih.gov/pubmed/25814774 http://dx.doi.org/10.1007/s00605-013-0541-y |
work_keys_str_mv | AT mudrinskinebojsa 2supernilpotentmalcevalgebras |