Cargando…

2-Supernilpotent Mal’cev algebras

In this note we prove that a Mal’cev algebra is 2-supernilpotent ([1, 1, 1] =  0) if and only if it is polynomially equivalent to a special expanded group. This generalizes Gumm’s result that a Mal’cev algebra is abelian if and only if it is polynomially equivalent to a module over a ring.

Detalles Bibliográficos
Autor principal: Mudrinski, Nebojša
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371078/
https://www.ncbi.nlm.nih.gov/pubmed/25814774
http://dx.doi.org/10.1007/s00605-013-0541-y
_version_ 1782362980309008384
author Mudrinski, Nebojša
author_facet Mudrinski, Nebojša
author_sort Mudrinski, Nebojša
collection PubMed
description In this note we prove that a Mal’cev algebra is 2-supernilpotent ([1, 1, 1] =  0) if and only if it is polynomially equivalent to a special expanded group. This generalizes Gumm’s result that a Mal’cev algebra is abelian if and only if it is polynomially equivalent to a module over a ring.
format Online
Article
Text
id pubmed-4371078
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Springer Vienna
record_format MEDLINE/PubMed
spelling pubmed-43710782015-03-24 2-Supernilpotent Mal’cev algebras Mudrinski, Nebojša Mon Hefte Math Article In this note we prove that a Mal’cev algebra is 2-supernilpotent ([1, 1, 1] =  0) if and only if it is polynomially equivalent to a special expanded group. This generalizes Gumm’s result that a Mal’cev algebra is abelian if and only if it is polynomially equivalent to a module over a ring. Springer Vienna 2013-08-31 2013 /pmc/articles/PMC4371078/ /pubmed/25814774 http://dx.doi.org/10.1007/s00605-013-0541-y Text en © The Author(s) 2013 https://creativecommons.org/licenses/by/2.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
spellingShingle Article
Mudrinski, Nebojša
2-Supernilpotent Mal’cev algebras
title 2-Supernilpotent Mal’cev algebras
title_full 2-Supernilpotent Mal’cev algebras
title_fullStr 2-Supernilpotent Mal’cev algebras
title_full_unstemmed 2-Supernilpotent Mal’cev algebras
title_short 2-Supernilpotent Mal’cev algebras
title_sort 2-supernilpotent mal’cev algebras
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371078/
https://www.ncbi.nlm.nih.gov/pubmed/25814774
http://dx.doi.org/10.1007/s00605-013-0541-y
work_keys_str_mv AT mudrinskinebojsa 2supernilpotentmalcevalgebras