Cargando…
Learning to Classify Organic and Conventional Wheat – A Machine Learning Driven Approach Using the MeltDB 2.0 Metabolomics Analysis Platform
We present results of our machine learning approach to the problem of classifying GC-MS data originating from wheat grains of different farming systems. The aim is to investigate the potential of learning algorithms to classify GC-MS data to be either from conventionally grown or from organically gr...
Autores principales: | Kessler, Nikolas, Bonte, Anja, Albaum, Stefan P., Mäder, Paul, Messmer, Monika, Goesmann, Alexander, Niehaus, Karsten, Langenkämper, Georg, Nattkemper, Tim W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371749/ https://www.ncbi.nlm.nih.gov/pubmed/25853128 http://dx.doi.org/10.3389/fbioe.2015.00035 |
Ejemplares similares
-
MeltDB 2.0–advances of the metabolomics software system
por: Kessler, Nikolas, et al.
Publicado: (2013) -
ALLocator: An Interactive Web Platform for the Analysis of Metabolomic LC-ESI-MS Datasets, Enabling Semi-Automated, User-Revised Compound Annotation and Mass Isotopomer Ratio Analysis
por: Kessler, Nikolas, et al.
Publicado: (2014) -
Riboflow: Using Deep Learning to Classify Riboswitches With ∼99% Accuracy
por: Premkumar, Keshav Aditya R., et al.
Publicado: (2020) -
Classifying Promoters by Interpreting the Hidden Information of DNA Sequences via Deep Learning and Combination of Continuous FastText N-Grams
por: Le, Nguyen Quoc Khanh, et al.
Publicado: (2019) -
Supervised Machine Learning Applied to Wearable Sensor Data Can Accurately Classify Functional Fitness Exercises Within a Continuous Workout
por: Preatoni, Ezio, et al.
Publicado: (2020)