Cargando…

Modelling land cover change in the Brazilian Amazon: temporal changes in drivers and calibration issues

Land cover change (LCC) models are used in many studies of human impacts on the environment, but knowing how well these models predict observed changes in the landscape is a challenge. We used nearly three decades of LCC maps to run several LCC simulations to: (1) determine which parameters associat...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosa, Isabel M. D., Purves, Drew, Carreiras, João M. B., Ewers, Robert M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372130/
https://www.ncbi.nlm.nih.gov/pubmed/25821401
http://dx.doi.org/10.1007/s10113-014-0614-z
Descripción
Sumario:Land cover change (LCC) models are used in many studies of human impacts on the environment, but knowing how well these models predict observed changes in the landscape is a challenge. We used nearly three decades of LCC maps to run several LCC simulations to: (1) determine which parameters associated with drivers of LCC (e.g. roads) get selected for which transition (forest to deforested, regeneration to deforested or deforested to regeneration); (2) investigate how the parameter values vary through time with respect to the different activities (e.g. farming); and (3) quantify the influence of choosing a particular time period for model calibration and validation on the performance of LCC models. We found that deforestation of primary forests tends to occur along roads (included in 95 % of models) and outside protected areas (included in all models), reflecting farming establishment. Regeneration tends to occur far from roads (included in 78 % of the models) and inside protected areas (included in 38 % of the models), reflecting the processes of land abandonment. Our temporal analysis of model parameters revealed a degree of variation through time (e.g. effectiveness of protected areas rose by 73 %, p < 0.001), but for the majority of parameters there was no significant trend. The degree to which model predictions agreed with observed change was heavily dependent on the year used for calibration (p < 0.001). The next generation of LCC models may need to embed trends in parameter values to allow the processes determining LCC to change through time and exert their influence on model predictions.