Cargando…

How Does B-Value Affect HARDI Reconstruction Using Clinical Diffusion MRI Data?

BACKGROUND: A number of imaging factors can affect the orientation distribution function (ODF) reconstruction in high angular resolution diffusion imaging (HARDI). The aim of this study was to investigate the effect of the b-value on the HARDI reconstruction and to seek for the appropriate b-value f...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Sangma, Zuo, Nianming, Shang, Liqing, Song, Ming, Fan, Lingzhong, Jiang, Tianzi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372417/
https://www.ncbi.nlm.nih.gov/pubmed/25803023
http://dx.doi.org/10.1371/journal.pone.0120773
Descripción
Sumario:BACKGROUND: A number of imaging factors can affect the orientation distribution function (ODF) reconstruction in high angular resolution diffusion imaging (HARDI). The aim of this study was to investigate the effect of the b-value on the HARDI reconstruction and to seek for the appropriate b-value for ODF reconstruction from clinical HARDI data. METHODS: Diffusion MRI data with various b-values were collected on a GE 3T MRI scanner. To reconstruct the diffusion ODF and fiber ODF, decomposition-based spherical polar Fourier imaging and deconvolution-based constrained spherical deconvolution approaches were applied separately. The full width at half maximum (FWHM) of the ODF and the angular difference of the peaks extracted from ODF were measured to investigate the effect of b-value on the ODF reconstruction. Visual inspection of the ODF was used to evaluate the reconstructions. RESULTS: The FWHM of the ODFs in the corpus callosum, which was chosen as the region of interest (ROI), decreased with increasing b-values. The differences in the FWHM for the diffusion ODF and the fiber ODF between the b-values of 2000 s/mm(2) and 2500 s/mm(2) were not significant. The angular differences of the ODF between 2000 s/mm(2) and 2500 s/mm(2) were lowest in both single-directional and two-directional situations. The ODFs became sharper and crossing-fiber situations were detected with an increase in b-value. B = 2000 s/mm(2) and above revealed most of the two-way or three-way crossing-fiber structures. CONCLUSIONS: Considering both the signal-to-noise ratio and the acquisition time, b = 2000 s/mm(2) is the basic requirement for ODF reconstruction using current HARDI methods on clinical data. This study can provide a useful reference for researchers and clinicians attempting to set appropriate scan protocols for specific HARDI experiments.