Cargando…

Enhanced semiempirical QM methods for biomolecular interactions

Recent successes and failures of the application of ‘enhanced’ semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very oft...

Descripción completa

Detalles Bibliográficos
Autores principales: Yilmazer, Nusret Duygu, Korth, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372622/
https://www.ncbi.nlm.nih.gov/pubmed/25848495
http://dx.doi.org/10.1016/j.csbj.2015.02.004
Descripción
Sumario:Recent successes and failures of the application of ‘enhanced’ semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy.