Cargando…
Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss
[1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of (36)Ar/(38)Ar = 4.2 ± 0.1 is highly significant for it prov...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373143/ https://www.ncbi.nlm.nih.gov/pubmed/25821261 http://dx.doi.org/10.1002/2013GL057763 |
Sumario: | [1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of (36)Ar/(38)Ar = 4.2 ± 0.1 is highly significant for it provides excellent evidence that “Mars” meteorites are indeed of Martian origin, and it points to a significant loss of argon of at least 50% and perhaps as high as 85–95% from the atmosphere of Mars in the past 4 billion years. Taken together with the isotopic fractionations in N, C, H, and O measured by SAM, these results imply a substantial loss of atmosphere from Mars in the posthydrodynamic escape phase. |
---|