Cargando…

Broadscale postseismic gravity change following the 2011 Tohoku-Oki earthquake and implication for deformation by viscoelastic relaxation and afterslip

The analysis of GRACE gravity data revealed postseismic gravity increase by 6 μGal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40–50% of the coseismic gravity change. It originates mostly from changes in the isotropic component corresponding to...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Shin-Chan, Sauber, Jeanne, Pollitz, Fred
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373167/
https://www.ncbi.nlm.nih.gov/pubmed/25821272
http://dx.doi.org/10.1002/2014GL060905
Descripción
Sumario:The analysis of GRACE gravity data revealed postseismic gravity increase by 6 μGal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40–50% of the coseismic gravity change. It originates mostly from changes in the isotropic component corresponding to the M(rr) moment tensor element. The exponential decay with rapid change in a year and gradual change afterward is a characteristic temporal pattern. Both viscoelastic relaxation and afterslip models produce reasonable agreement with the GRACE free-air gravity observation, while their Bouguer gravity patterns and seafloor vertical deformations are distinctly different. The postseismic gravity variation is best modeled by the biviscous relaxation with a transient and steady state viscosity of 10(18) and 10(19) Pa s, respectively, for the asthenosphere. Our calculated higher-resolution viscoelastic relaxation model, underlying the partially ruptured elastic lithosphere, yields the localized postseismic subsidence above the hypocenter reported from the GPS-acoustic seafloor surveying.