Cargando…

A Game Theoretic Framework for Analyzing Re-Identification Risk

Given the potential wealth of insights in personal data the big databases can provide, many organizations aim to share data while protecting privacy by sharing de-identified data, but are concerned because various demonstrations show such data can be re-identified. Yet these investigations focus on...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Zhiyu, Vorobeychik, Yevgeniy, Xia, Weiyi, Clayton, Ellen Wright, Kantarcioglu, Murat, Ganta, Ranjit, Heatherly, Raymond, Malin, Bradley A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373733/
https://www.ncbi.nlm.nih.gov/pubmed/25807380
http://dx.doi.org/10.1371/journal.pone.0120592
Descripción
Sumario:Given the potential wealth of insights in personal data the big databases can provide, many organizations aim to share data while protecting privacy by sharing de-identified data, but are concerned because various demonstrations show such data can be re-identified. Yet these investigations focus on how attacks can be perpetrated, not the likelihood they will be realized. This paper introduces a game theoretic framework that enables a publisher to balance re-identification risk with the value of sharing data, leveraging a natural assumption that a recipient only attempts re-identification if its potential gains outweigh the costs. We apply the framework to a real case study, where the value of the data to the publisher is the actual grant funding dollar amounts from a national sponsor and the re-identification gain of the recipient is the fine paid to a regulator for violation of federal privacy rules. There are three notable findings: 1) it is possible to achieve zero risk, in that the recipient never gains from re-identification, while sharing almost as much data as the optimal solution that allows for a small amount of risk; 2) the zero-risk solution enables sharing much more data than a commonly invoked de-identification policy of the U.S. Health Insurance Portability and Accountability Act (HIPAA); and 3) a sensitivity analysis demonstrates these findings are robust to order-of-magnitude changes in player losses and gains. In combination, these findings provide support that such a framework can enable pragmatic policy decisions about de-identified data sharing.