Cargando…

Stability of the Octameric Structure Affects Plasminogen-Binding Capacity of Streptococcal Enolase

Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell,...

Descripción completa

Detalles Bibliográficos
Autores principales: Cork, Amanda J., Ericsson, Daniel J., Law, Ruby H. P., Casey, Lachlan W., Valkov, Eugene, Bertozzi, Carlo, Stamp, Anna, Jovcevski, Blagojce, Aquilina, J. Andrew, Whisstock, James C., Walker, Mark J., Kobe, Bostjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373793/
https://www.ncbi.nlm.nih.gov/pubmed/25807546
http://dx.doi.org/10.1371/journal.pone.0121764
Descripción
Sumario:Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SEN(K312A) and SEN(K362A) is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin(ogen) binding and activation.