Cargando…

Demonstration of the Presence of the “Deleted” MIR122 Gene in HepG2 Cells

MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionari...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamad, Ibrahim A. Y., Fei, Yue, Kalea, Anastasia Z., Yin, Dan, Smith, Andrew J. P., Palmen, Jutta, Humphries, Steve E., Talmud, Philippa J., Walker, Ann P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374784/
https://www.ncbi.nlm.nih.gov/pubmed/25811611
http://dx.doi.org/10.1371/journal.pone.0122471
Descripción
Sumario:MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells.