Cargando…

Mobility of signaling molecules: the key to deciphering plant organogenesis

Signaling molecules move between cells to form a characteristic distribution pattern within a developing organ; thereafter, they spatiotemporally regulate organ development. A key question in this process is how the signaling molecules robustly form the precise distribution on a tissue scale in a re...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawade, Kensuke, Tanimoto, Hirokazu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Japan 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375297/
https://www.ncbi.nlm.nih.gov/pubmed/25516503
http://dx.doi.org/10.1007/s10265-014-0692-5
Descripción
Sumario:Signaling molecules move between cells to form a characteristic distribution pattern within a developing organ; thereafter, they spatiotemporally regulate organ development. A key question in this process is how the signaling molecules robustly form the precise distribution on a tissue scale in a reproducible manner. Despite of an increasing number of quantitative studies regarding the mobility of signaling molecules, the detail mechanism of organogenesis via intercellular signaling is still unclear. We here review the potential advantages of plant development to address this question, focusing on the cytoplasmic continuity of plant cells through the plasmodesmata. The plant system would provide a unique opportunity to define the simple transportation mode of diffusion process, and, hence, the mechanism of organogenesis via intercellular signaling. Based on the advances in the understanding of intercellular signaling at the molecular level and in the quantitative imaging techniques, we discuss our current challenges in measuring the mobility of signaling molecules for deciphering plant organogenesis.