Cargando…

Bidirectional cross-regulation between the endothelial nitric oxide synthase and β-catenin signalling pathways

AIMS: β-catenin has been shown to be regulated by inducible nitric oxide synthase (NOS) in endothelial cells. We investigated here whether β-catenin interacts with and regulates endothelial NOS (eNOS) and whether eNOS activation promotes β-catenin signalling. METHODS AND RESULTS: We identified β-cat...

Descripción completa

Detalles Bibliográficos
Autores principales: Warboys, Christina M., Chen, Nan, Zhang, Qiuping, Shaifta, Yasin, Vanderslott, Genevieve, Passacquale, Gabriella, Hu, Yanhua, Xu, Qingbo, Ward, Jeremy P.T., Ferro, Albert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375405/
https://www.ncbi.nlm.nih.gov/pubmed/25062958
http://dx.doi.org/10.1093/cvr/cvu173
Descripción
Sumario:AIMS: β-catenin has been shown to be regulated by inducible nitric oxide synthase (NOS) in endothelial cells. We investigated here whether β-catenin interacts with and regulates endothelial NOS (eNOS) and whether eNOS activation promotes β-catenin signalling. METHODS AND RESULTS: We identified β-catenin as a novel eNOS binding protein in human umbilical vein endothelial cells (HUVECs) by mass spectroscopy and western blot analyses of β-catenin and eNOS immunoprecipitates. This was confirmed by in situ proximity ligation assay. eNOS activity, assessed by cGMP production and eNOS phosphorylation (Ser1177), was enhanced in β-catenin(−/−) mouse pulmonary endothelial cells (MPECs) relative to wild-type MPECs. eNOS activation (using adenosine, salbutamol, thrombin, or histamine), or application of an NO donor (spermine NONOate) or cGMP-analogue (8-bromo-cGMP) caused nuclear translocation of β-catenin in HUVEC as shown by western blotting of nuclear extracts. Exposure to spermine NONOate, 8-bromo-cGMP, or sildenafil (a phosphodiesterase type 5 inhibitor) also increased the expression of β-catenin-dependent transcripts, IL-8, and cyclin D1. Stimulation of wild-type MPECs with basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), spermine NONOate, 8-bromo-cGMP, or sildenafil increased tube length relative to controls in an angiogenesis assay. These responses were abrogated in β-catenin(−/−) MPECs, with the exception of that to bFGF which is NO-independent. In C57BL/6 mice, subcutaneous VEGF-supplemented Matrigel plugs containing β-catenin(−/−) MPECs exhibited reduced angiogenesis compared with plugs containing wild-type MPECs. Angiogenesis was not altered in bFGF-supplemented Matrigel. CONCLUSION: These data reveal bidirectional cross-talk and regulation between the NO-cGMP and β-catenin signalling pathways.