Cargando…
On the error propagation of semi-Lagrange and Fourier methods for advection problems()
In this paper we study the error propagation of numerical schemes for the advection equation in the case where high precision is desired. The numerical methods considered are based on the fast Fourier transform, polynomial interpolation (semi-Lagrangian methods using a Lagrange or spline interpolati...
Autores principales: | Einkemmer, Lukas, Ostermann, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375614/ https://www.ncbi.nlm.nih.gov/pubmed/25844018 http://dx.doi.org/10.1016/j.camwa.2014.12.004 |
Ejemplares similares
-
An almost symmetric Strang splitting scheme for the construction of high order composition methods()
por: Einkemmer, Lukas, et al.
Publicado: (2014) -
Meshfree Semi-Lagrangian Methods for Solving Surface Advection PDEs
por: Petras, Argyrios, et al.
Publicado: (2022) -
An almost symmetric Strang splitting scheme for nonlinear evolution equations()
por: Einkemmer, Lukas, et al.
Publicado: (2014) -
Lagrange-NG: The next generation of Lagrange
por: Bettisworth, Ben, et al.
Publicado: (2023) -
Physics-compatible finite element methods for scalar and tensorial advection problems
por: Lohmann, Christoph
Publicado: (2019)