Cargando…

Aminoglycosides induce fragility of human red cell membrane: An in vitro study

OBJECTIVES: It is well-known that aminoglycosides are ototoxic and nephrotoxic. Recent advances in pharmacology research suggest that the red cell used as a carrier of aminoglycosides. This study aimed to find the effect of aminoglycosides on the human red cell membrane using osmotic fragility test....

Descripción completa

Detalles Bibliográficos
Autor principal: Alnakshbandi, Abdulkadir A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375805/
https://www.ncbi.nlm.nih.gov/pubmed/25821323
http://dx.doi.org/10.4103/0253-7613.150375
Descripción
Sumario:OBJECTIVES: It is well-known that aminoglycosides are ototoxic and nephrotoxic. Recent advances in pharmacology research suggest that the red cell used as a carrier of aminoglycosides. This study aimed to find the effect of aminoglycosides on the human red cell membrane using osmotic fragility test. MATERIALS AND METHODS: This study was conducted in Rizgari Teaching Hospital in Erbil, Iraq. The effect of aminoglycosides, namely gentamicin, amikacin, and spectinomycin, on human red cells was investigated. The effects of aminoglycosides were evaluated by osmotic fragility test using fresh human blood in the presence of aminoglycosides in concentrations of 10–160 μg/mL. RESULTS: The results showed that aminoglycosides drugs shifted the osmotic fragility curve to some extent, and this effect was well observed with spectinomycin. The hemolysis did not depend on the concentration of aminoglycosides. The concentration of sodium chloride to induced 50% hemolysis is higher in presence of gentamicin, amikacin and spectinomycin (at 160 μg/mL) than corresponding control and this account to an increment in hemolysis percents of 1.88, 1.5 and 1.06%, respectively. CONCLUSION: Aminoglycosides induce human red cell membrane fragility in a concentration-independent manner.