Cargando…
Functional Differences between GDNF-Dependent and FGF2-Dependent Mouse Spermatogonial Stem Cell Self-Renewal
Spermatogonial stem cells (SSCs) are required for spermatogenesis. Earlier studies showed that glial cell line-derived neurotrophic factor (GDNF) was indispensable for SSC self-renewal by binding to the GFRA1/RET receptor. Mice with mutations in these molecules showed impaired spermatogenesis, which...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375941/ https://www.ncbi.nlm.nih.gov/pubmed/25684228 http://dx.doi.org/10.1016/j.stemcr.2015.01.010 |
Sumario: | Spermatogonial stem cells (SSCs) are required for spermatogenesis. Earlier studies showed that glial cell line-derived neurotrophic factor (GDNF) was indispensable for SSC self-renewal by binding to the GFRA1/RET receptor. Mice with mutations in these molecules showed impaired spermatogenesis, which was attributed to SSC depletion. Here we show that SSCs undergo GDNF-independent self-renewal. A small number of spermatogonia formed colonies when testis fragments from a Ret mutant mouse strain were transplanted into heterologous recipients. Moreover, fibroblast growth factor 2 (FGF2) supplementation enabled in vitro SSC expansion without GDNF. Although GDNF-mediated self-renewal signaling required both AKT and MAP2K1/2, the latter was dispensable in FGF2-mediated self-renewal. FGF2-depleted testes exhibited increased levels of GDNF and were enriched for SSCs, suggesting that the balance between FGF2 and GDNF levels influences SSC self-renewal in vivo. Our results show that SSCs exhibit at least two modes of self-renewal and suggest complexity of SSC regulation in vivo. |
---|