Cargando…
Bayesian inference of protein structure from chemical shift data
Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model,...
Autores principales: | Bratholm, Lars A., Christensen, Anders S., Hamelryck, Thomas, Jensen, Jan H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4375973/ https://www.ncbi.nlm.nih.gov/pubmed/25825683 http://dx.doi.org/10.7717/peerj.861 |
Ejemplares similares
-
FragBuilder: an efficient Python library to setup quantum chemistry calculations on peptides models
por: Christensen, Anders S., et al.
Publicado: (2014) -
ProCS15: a DFT-based chemical shift predictor for backbone and Cβ atoms in proteins
por: Larsen, Anders S., et al.
Publicado: (2015) -
Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics
por: Christensen, Anders S., et al.
Publicado: (2013) -
Protein structure refinement using a quantum mechanics-based chemical shielding predictor
por: Bratholm, Lars A., et al.
Publicado: (2017) -
Mocapy++ - A toolkit for inference and learning in dynamic Bayesian networks
por: Paluszewski, Martin, et al.
Publicado: (2010)