Cargando…
Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis
BACKGROUND: The fruit of litchi (Litchi chinensis) comprises a white translucent edible aril surrounded by a pericarp. The pericarp of litchi has been the focus of studies associated with fruit size, coloration, cracking and shelf life. However, research at the molecular level has been limited by th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376514/ https://www.ncbi.nlm.nih.gov/pubmed/25887579 http://dx.doi.org/10.1186/s12864-015-1433-4 |
_version_ | 1782363748954013696 |
---|---|
author | Lai, Biao Hu, Bing Qin, Yong-Hua Zhao, Jie-Tang Wang, Hui-Cong Hu, Gui-Bing |
author_facet | Lai, Biao Hu, Bing Qin, Yong-Hua Zhao, Jie-Tang Wang, Hui-Cong Hu, Gui-Bing |
author_sort | Lai, Biao |
collection | PubMed |
description | BACKGROUND: The fruit of litchi (Litchi chinensis) comprises a white translucent edible aril surrounded by a pericarp. The pericarp of litchi has been the focus of studies associated with fruit size, coloration, cracking and shelf life. However, research at the molecular level has been limited by the lack of genomic and transcriptomic information. In this study, an analysis of the transcriptome of litchi pericarp was performed to obtain information regarding the molecular mechanisms underlying the physiological changes in the pericarp, including those leading to fruit surface coloration. RESULTS: Coincident with the rapid break down of chlorophyll, but substantial increase of anthocyanins in litchi pericarp as fruit developed, two major physiological changes, degreening and pigmentation were visually apparent. In this study, a cDNA library of litchi pericarp with three different coloration stages was constructed. A total of 4.7 Gb of raw RNA-Seq data was generated and this was then de novo assembled into 51,089 unigenes with a mean length of 737 bp. Approximately 70% of the unigenes (34,705) could be annotated based on public protein databases and, of these, 3,649 genes were significantly differentially expressed between any two coloration stages, while 156 genes were differentially expressed among all three stages. Genes encoding enzymes involved in chlorophyll degradation and flavonoid biosynthesis were identified in the transcriptome dataset. The transcript expression patterns of the Stay Green (SGR) protein suggested a key role in chlorophyll degradation in the litchi pericarp, and this conclusion was supported by the result of an assay over-expressing LcSGR protein in tobacco leaves. We also found that the expression levels of most genes especially late anthocyanin biosynthesis genes were co-ordinated up-regulated coincident with the accumulation of anthocyanins, and that candidate MYB transcription factors that likely regulate flavonoid biosynthesis were identified. CONCLUSIONS: This study provides a large collection of transcripts and expression profiles associated with litchi fruit maturation processes, including coloration. Since most of the unigenes were annotated, they provide a platform for litchi functional genomic research within this species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1433-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4376514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-43765142015-03-28 Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis Lai, Biao Hu, Bing Qin, Yong-Hua Zhao, Jie-Tang Wang, Hui-Cong Hu, Gui-Bing BMC Genomics Research Article BACKGROUND: The fruit of litchi (Litchi chinensis) comprises a white translucent edible aril surrounded by a pericarp. The pericarp of litchi has been the focus of studies associated with fruit size, coloration, cracking and shelf life. However, research at the molecular level has been limited by the lack of genomic and transcriptomic information. In this study, an analysis of the transcriptome of litchi pericarp was performed to obtain information regarding the molecular mechanisms underlying the physiological changes in the pericarp, including those leading to fruit surface coloration. RESULTS: Coincident with the rapid break down of chlorophyll, but substantial increase of anthocyanins in litchi pericarp as fruit developed, two major physiological changes, degreening and pigmentation were visually apparent. In this study, a cDNA library of litchi pericarp with three different coloration stages was constructed. A total of 4.7 Gb of raw RNA-Seq data was generated and this was then de novo assembled into 51,089 unigenes with a mean length of 737 bp. Approximately 70% of the unigenes (34,705) could be annotated based on public protein databases and, of these, 3,649 genes were significantly differentially expressed between any two coloration stages, while 156 genes were differentially expressed among all three stages. Genes encoding enzymes involved in chlorophyll degradation and flavonoid biosynthesis were identified in the transcriptome dataset. The transcript expression patterns of the Stay Green (SGR) protein suggested a key role in chlorophyll degradation in the litchi pericarp, and this conclusion was supported by the result of an assay over-expressing LcSGR protein in tobacco leaves. We also found that the expression levels of most genes especially late anthocyanin biosynthesis genes were co-ordinated up-regulated coincident with the accumulation of anthocyanins, and that candidate MYB transcription factors that likely regulate flavonoid biosynthesis were identified. CONCLUSIONS: This study provides a large collection of transcripts and expression profiles associated with litchi fruit maturation processes, including coloration. Since most of the unigenes were annotated, they provide a platform for litchi functional genomic research within this species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1433-4) contains supplementary material, which is available to authorized users. BioMed Central 2015-03-21 /pmc/articles/PMC4376514/ /pubmed/25887579 http://dx.doi.org/10.1186/s12864-015-1433-4 Text en © Lai et al.; licensee BioMed Central. 2015 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Lai, Biao Hu, Bing Qin, Yong-Hua Zhao, Jie-Tang Wang, Hui-Cong Hu, Gui-Bing Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis |
title | Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis |
title_full | Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis |
title_fullStr | Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis |
title_full_unstemmed | Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis |
title_short | Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis |
title_sort | transcriptomic analysis of litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376514/ https://www.ncbi.nlm.nih.gov/pubmed/25887579 http://dx.doi.org/10.1186/s12864-015-1433-4 |
work_keys_str_mv | AT laibiao transcriptomicanalysisoflitchichinensispericarpduringmaturationwithafocusonchlorophylldegradationandflavonoidbiosynthesis AT hubing transcriptomicanalysisoflitchichinensispericarpduringmaturationwithafocusonchlorophylldegradationandflavonoidbiosynthesis AT qinyonghua transcriptomicanalysisoflitchichinensispericarpduringmaturationwithafocusonchlorophylldegradationandflavonoidbiosynthesis AT zhaojietang transcriptomicanalysisoflitchichinensispericarpduringmaturationwithafocusonchlorophylldegradationandflavonoidbiosynthesis AT wanghuicong transcriptomicanalysisoflitchichinensispericarpduringmaturationwithafocusonchlorophylldegradationandflavonoidbiosynthesis AT huguibing transcriptomicanalysisoflitchichinensispericarpduringmaturationwithafocusonchlorophylldegradationandflavonoidbiosynthesis |