Cargando…

A 1.6-Mb Microdeletion in Chromosome 17q22 Leads to NOG-Related Symphalangism Spectrum Disorder without Intellectual Disability

Microdeletions in chromosome 17q22, where the NOG gene resides, have been reported leading to the NOG-related symphalangism spectrum disorder (NOG-SSD), intellectual disability and other developmental abnormalities. In this study we reported a dominant Chinese Han family segregating with typical NOG...

Descripción completa

Detalles Bibliográficos
Autores principales: Pang, Xiuhong, Luo, Huajie, Chai, Yongchuan, Wang, Xiaowen, Sun, Lianhua, He, Longxia, Chen, Penghui, Wu, Hao, Yang, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376726/
https://www.ncbi.nlm.nih.gov/pubmed/25815513
http://dx.doi.org/10.1371/journal.pone.0120816
Descripción
Sumario:Microdeletions in chromosome 17q22, where the NOG gene resides, have been reported leading to the NOG-related symphalangism spectrum disorder (NOG-SSD), intellectual disability and other developmental abnormalities. In this study we reported a dominant Chinese Han family segregating with typical NOG-SSD symptoms including proximal symphalangism, conductive hearing loss, amblyopia and strabismus, but not intellectual disability. Sanger sequencing identified no pathogenic mutation in the coding regions of candidate genes NOG, GDF5 and FGF9. SNP genotyping in the genomic region surrounding NOG identified loss of heterozygosity in the affected family members. By array comparative genomic hybridization and quantitative real-time polymerase chain reaction, we identified and mapped the breakpoints of a novel 1.6-Mb microdeletion in chromosome 17q22 that included NOG and twelve other genes. It is the first microdeletion reported in chromosome 17q22 that is associated with NOG-SSD only but not with intellectual disability. Our results may help identifying the dosage sensitive genes for intellectual disability and other developmental abnormalities in chromosome 17q22. Our study also suggested that genomic deletions in chromosome 17q22 should be screened in the NOG-SSD patients in which no pathogenic mutation is identified by conventional sequencing methods.