Cargando…
Neonatal Streptococcus pneumoniae Infection May Aggravate Adulthood Allergic Airways Disease in Association with IL-17A
Epidemiologic studies have demonstrated that some bacteria colonization or infections in early-life increased the risk for subsequent asthma development. However, little is known about the mechanisms by which early-life bacterial infection increases this risk. The aim of this study was to investigat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376740/ https://www.ncbi.nlm.nih.gov/pubmed/25816135 http://dx.doi.org/10.1371/journal.pone.0123010 |
Sumario: | Epidemiologic studies have demonstrated that some bacteria colonization or infections in early-life increased the risk for subsequent asthma development. However, little is known about the mechanisms by which early-life bacterial infection increases this risk. The aim of this study was to investigate the effect of neonatal Streptococcus pneumoniae infection on the development of adulthood asthma, and to explore the possible mechanism. A non-lethal S. pneumoniae lung infection was established by intranasal inoculation of neonatal (1-week-old) female mice with D39. Mice were sensitized and challenged with ovalbumin in adulthood to induce allergic airways disease (AAD). Twenty-four hours later, the lungs and bronchoalveolar lavage fluid (BALF) were collected to assess AAD. Neonatal S. pneumoniae infection exacerbated adulthood hallmark features of AAD, with enhanced airway hyperresponsiveness and increased neutrophil recruitment into the airways, increased Th17 cells and interleukin (IL)-17A productions. Depletion of IL-17A by i.p. injection of a neutralizing monoclonal antibody reduced neutrophil recruitment into the airways, alleviated airway inflammation and decreased airway hyperresponsiveness. Furthermore, IL-17A depletion partially restored levels of inteferon-γ, but had no effect on the release of IL-5 or IL-13. Our data suggest that neonatal S. pneumoniae infection may promote the development of adulthood asthma in association with increased IL-17A production. |
---|