Cargando…

An In Silico Insight into Novel Therapeutic Interaction of LTNF Peptide-LT10 and Design of Structure Based Peptidomimetics for Putative Anti-Diabetic Activity

Lethal Toxin Neutralizing Factor (LTNF) obtained from Opossum serum (Didephis virginiana) is known to exhibit toxin-neutralizing activity for envenomation caused by animals, plants and bacteria. Small synthetic peptide- LT10 (10mer) derived from N-terminal fraction of LTNF exhibit similar anti-letha...

Descripción completa

Detalles Bibliográficos
Autores principales: Chavan, Sonali Gopichand, Deobagkar, Deepti Dileep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376886/
https://www.ncbi.nlm.nih.gov/pubmed/25816209
http://dx.doi.org/10.1371/journal.pone.0121860
Descripción
Sumario:Lethal Toxin Neutralizing Factor (LTNF) obtained from Opossum serum (Didephis virginiana) is known to exhibit toxin-neutralizing activity for envenomation caused by animals, plants and bacteria. Small synthetic peptide- LT10 (10mer) derived from N-terminal fraction of LTNF exhibit similar anti-lethal and anti-allergic property. In our in silico study, we identified Insulin Degrading Enzyme (IDE) as a potential target of LT10 peptide followed by molecular docking and molecular dynamic (MD) simulation studies which revealed relatively stable interaction of LT10 peptide with IDE. Moreover, their detailed interaction analyses dictate IDE-inhibitory interactions of LT10 peptide. This prediction ofLT10 peptide as a novel putative IDE-inhibitor suggests its possible role in anti-diabetic treatment since IDE- inhibitors are known to assist treatment of Diabetes mellitus by enhancing insulin signalling. Furthermore, series of structure based peptidomimetics were designed from LT10 peptide and screened for their inhibitory interactions which ultimately led to a small set of peptidomimetic inhibitors of IDE. These peptidomimetic thus might provide a new class of IDE-inhibitors, those derived from LT10 peptide.