Cargando…
Variable Importance and Prediction Methods for Longitudinal Problems with Missing Variables
We present prediction and variable importance (VIM) methods for longitudinal data sets containing continuous and binary exposures subject to missingness. We demonstrate the use of these methods for prognosis of medical outcomes of severe trauma patients, a field in which current medical practice inv...
Autores principales: | Díaz, Iván, Hubbard, Alan, Decker, Anna, Cohen, Mitchell |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376910/ https://www.ncbi.nlm.nih.gov/pubmed/25815719 http://dx.doi.org/10.1371/journal.pone.0120031 |
Ejemplares similares
-
Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study
por: De Silva, Anurika Priyanjali, et al.
Publicado: (2019) -
Dynamic prediction based on variability of a longitudinal biomarker
por: Campbell, Kristen R., et al.
Publicado: (2021) -
Examining variable selection methods for the predictive performance of regression models and the proportion of selected variables and selected random variables
por: Kaneko, Hiromasa
Publicado: (2021) -
Determining relative importance of variables in developing and validating predictive models
por: Beyene, Joseph, et al.
Publicado: (2009) -
Comparison of four variable selection methods to determine the important variables in predicting the prognosis of traumatic brain injury patients by support vector machine
por: Pourahmad, Saeedeh, et al.
Publicado: (2019)