Cargando…
Improving the Performance of an EEG-Based Motor Imagery Brain Computer Interface Using Task Evoked Changes in Pupil Diameter
For individuals with high degrees of motor disability or locked-in syndrome, it is impractical or impossible to use mechanical switches to interact with electronic devices. Brain computer interfaces (BCIs) can use motor imagery to detect interaction intention from users but lack the accuracy of mech...
Autores principales: | Rozado, David, Duenser, Andreas, Howell, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376947/ https://www.ncbi.nlm.nih.gov/pubmed/25816285 http://dx.doi.org/10.1371/journal.pone.0121262 |
Ejemplares similares
-
Correction: Improving the Performance of an EEG-Based Motor Imagery Brain Computer Interface Using Task Evoked Changes in Pupil Diameter
Publicado: (2015) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
por: Padfield, Natasha, et al.
Publicado: (2019)