Cargando…

miR-205 acts as a tumor radiosensitizer by targeting ZEB1 and Ubc13

Tumor cells associated with therapy resistance (radioresistance and drug resistance) are likely to give rise to local recurrence and distant metastatic relapse. Recent studies revealed microRNA (miRNA)-mediated regulation of metastasis and epithelial-mesenchymal transition; however, whether specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Peijing, Wang, Li, Rodriguez-Aguayo, Cristian, Yuan, Yuan, Debeb, Bisrat G., Chen, Dahu, Sun, Yutong, You, M. James, Liu, Yongqing, Dean, Douglas C., Woodward, Wendy A., Liang, Han, Yang, Xianbin, Lopez-Berestein, Gabriel, Sood, Anil K., Hu, Ye, Ang, K. Kian, Chen, Junjie, Ma, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377070/
https://www.ncbi.nlm.nih.gov/pubmed/25476932
http://dx.doi.org/10.1038/ncomms6671
Descripción
Sumario:Tumor cells associated with therapy resistance (radioresistance and drug resistance) are likely to give rise to local recurrence and distant metastatic relapse. Recent studies revealed microRNA (miRNA)-mediated regulation of metastasis and epithelial-mesenchymal transition; however, whether specific miRNAs regulate tumor radioresistance and can be exploited as radiosensitizing agents remains unclear. Here we find that miR-205 promotes radiosensitivity and is downregulated in radioresistant subpopulations of breast cancer cells, and that loss of miR-205 is highly associated with poor distant relapse-free survival in breast cancer patients. Notably, therapeutic delivery of miR-205 mimics via nanoliposomes can sensitize the tumor to radiation in a xenograft model. Mechanistically, radiation suppresses miR-205 expression through ataxia telangiectasia mutated (ATM) and zinc finger E-box binding homeobox 1 (ZEB1). Moreover, miR-205 inhibits DNA damage repair by targeting ZEB1 and the ubiquitin-conjugating enzyme Ubc13. These findings identify miR-205 as a radiosensitizing miRNA and reveal a new therapeutic strategy for radioresistant tumors.