Cargando…

New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus

BACKGROUND: Rapeseed (B. napus, AACC, 2n = 38) is one of the most important oil seed crops in the world, it is also one of the most common oil for production of biodiesel. Its oil is a mixture of various fatty acids and dissection of the genetic network for fatty acids biosynthesis is of great impor...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaodong, Long, Yan, Yin, Yongtai, Zhang, Chunyu, Gan, Lu, Liu, Liezhao, Yu, Longjiang, Meng, Jinling, Li, Maoteng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377205/
https://www.ncbi.nlm.nih.gov/pubmed/25888376
http://dx.doi.org/10.1186/s12870-015-0475-8
Descripción
Sumario:BACKGROUND: Rapeseed (B. napus, AACC, 2n = 38) is one of the most important oil seed crops in the world, it is also one of the most common oil for production of biodiesel. Its oil is a mixture of various fatty acids and dissection of the genetic network for fatty acids biosynthesis is of great importance for improving seed quality. RESULTS: The genetic basis of fatty acid biosynthesis in B. napus was investigated via quantitative trail locus (QTL) analysis using a doubled haploid (DH) population with 202 lines. A total of 72 individual QTLs and a large number pairs of epistatic interactions associated with the content of 10 different fatty acids were detected. A total of 234 homologous genes of Arabidopsis thaliana that are involved in fatty acid metabolism were found within the confidence intervals (CIs) of 47 QTLs. Among them, 47 and 15 genes homologous to those of B. rapa and B. oleracea were detected, respectively. After the QTL mapping, the epistatic and the candidate gene interaction analysis, a potential regulatory pathway controlling fatty acid biosynthesis in B. napus was constructed, including 50 enzymes encoded genes and five regulatory factors (LEC1, LEC2, FUS3, WRI1 and ABI3). Subsequently, the interaction between these five regulatory factors and the genes involved in fatty acid metabolism were analyzed. CONCLUSIONS: In this study, a potential regulatory pathway controlling the fatty acid was constructed by QTL analysis and in silico mapping analysis. These results enriched our knowledge of QTLs for fatty acids metabolism and provided a new clue for genetic engineering fatty acids composition in B. napus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-015-0475-8) contains supplementary material, which is available to authorized users.