Cargando…

Inflammatory Cytokine Expression and Sebum Production after Exposure of Cultured Human Sebocytes to Ultraviolet A Radiation and Light at Wavelengths of 650 nm and 830 nm

BACKGROUND: The effectiveness of ultraviolet (UV) radiation, visible light, or infrared light therapy for the treatment of acne is the subject of ongoing scientific debate. OBJECTIVE: This study was conducted to investigate changes in sebum production and the expression of inflammatory cytokines, ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Weon Ju, Chae, Soo Yuhl, Ryu, Hyo Sub, Jang, Yong Hyun, Lee, Seok-Jong, Kim, Do Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Dermatological Association; The Korean Society for Investigative Dermatology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4377405/
https://www.ncbi.nlm.nih.gov/pubmed/25834355
http://dx.doi.org/10.5021/ad.2015.27.2.163
Descripción
Sumario:BACKGROUND: The effectiveness of ultraviolet (UV) radiation, visible light, or infrared light therapy for the treatment of acne is the subject of ongoing scientific debate. OBJECTIVE: This study was conducted to investigate changes in sebum production and the expression of inflammatory cytokines, matrix metalloproteinases (MMPs), and antimicrobial peptides (AMPs), following exposure of cultured human sebocytes to UVA radiation and light at wavelengths of 650 nm and 830 nm. METHODS: Reverse transcription polymerase chain reaction assays were performed to measure the gene expression levels of inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-8, and tumor necrosis factor-α), MMPs (MMP-1, MMP-3, and MMP-9), and AMPs (psoriasin, hBD-2, hBD-3, and LL-37) in cultured sebocytes after exposure to UVA radiation (2 J/cm(2), 3 J/cm(2), and 5 J/cm(2)) and light at wavelengths of 650 nm (14 J/cm(2), 29 J/cm(2), and 87 J/cm(2)) and 830 nm (5 J/cm(2), 10 J/cm(2), and 30 J/cm(2)). Expression of inflammatory cytokine proteins and sebum production were measured using enzyme-linked immunoassays and a lipid analysis kit, respectively. RESULTS: Exposure of cultured sebocytes to UVA radiation and light at wavelengths of 650 nm and 830 nm did not show a significant increase in the expression of inflammatory cytokines, MMPs, or AMPs. Sebum production was not significantly decreased after exposure to UVA radiation and light at both wavelengths. CONCLUSION: We propose that UVA radiation, visible light, and infrared light can be used to target Propionibacterium acnes for the treatment of acne, without an increase in the expression of inflammatory biomarkers and sebum production.