Cargando…

Opposing Effects of Semantic Diversity in Lexical and Semantic Relatedness Decisions

Semantic ambiguity has often been divided into 2 forms: homonymy, referring to words with 2 unrelated interpretations (e.g., bark), and polysemy, referring to words associated with a number of varying but semantically linked uses (e.g., twist). Typically, polysemous words are thought of as having a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoffman, Paul, Woollams, Anna M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Psychological Association 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378535/
https://www.ncbi.nlm.nih.gov/pubmed/25751041
http://dx.doi.org/10.1037/a0038995
Descripción
Sumario:Semantic ambiguity has often been divided into 2 forms: homonymy, referring to words with 2 unrelated interpretations (e.g., bark), and polysemy, referring to words associated with a number of varying but semantically linked uses (e.g., twist). Typically, polysemous words are thought of as having a fixed number of discrete definitions, or “senses,” with each use of the word corresponding to one of its senses. In this study, we investigated an alternative conception of polysemy, based on the idea that polysemous variation in meaning is a continuous, graded phenomenon that occurs as a function of contextual variation in word usage. We quantified this contextual variation using semantic diversity (SemD), a corpus-based measure of the degree to which a particular word is used in a diverse set of linguistic contexts. In line with other approaches to polysemy, we found a reaction time (RT) advantage for high SemD words in lexical decision, which occurred for words of both high and low imageability. When participants made semantic relatedness decisions to word pairs, however, responses were slower to high SemD pairs, irrespective of whether these were related or unrelated. Again, this result emerged irrespective of the imageability of the word. The latter result diverges from previous findings using homonyms, in which ambiguity effects have only been found for related word pairs. We argue that participants were slower to respond to high SemD words because their high contextual variability resulted in noisy, underspecified semantic representations that were more difficult to compare with one another. We demonstrated this principle in a connectionist computational model that was trained to activate distributed semantic representations from orthographic inputs. Greater variability in the orthography-to-semantic mappings of high SemD words resulted in a lower degree of similarity for related pairs of this type. At the same time, the representations of high SemD unrelated pairs were less distinct from one another. In addition, the model demonstrated more rapid semantic activation for high SemD words, thought to underpin the processing advantage in lexical decision. These results support the view that polysemous variation in word meaning can be conceptualized in terms of graded variation in distributed semantic representations.