Cargando…

Enantioselective synthesis of d-α-amino amides from aliphatic aldehydes

Peptides consisting of d-amino amides are highly represented among both biologically active natural products and non-natural small molecules used in therapeutic development. Chemical synthesis of d-amino amides most often involves approaches based on enzymatic resolution or fractional recrystallizat...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwieter, Kenneth E., Johnston, Jeffrey N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378585/
https://www.ncbi.nlm.nih.gov/pubmed/25838883
http://dx.doi.org/10.1039/c5sc00064e
Descripción
Sumario:Peptides consisting of d-amino amides are highly represented among both biologically active natural products and non-natural small molecules used in therapeutic development. Chemical synthesis of d-amino amides most often involves approaches based on enzymatic resolution or fractional recrystallization of their diastereomeric amino acid salt precursors, techniques that produce an equal amount of the l-amino acid. Enantioselective synthesis, however, promises selective and general access to a specific α-amino amide, and may enable efficient peptide synthesis regardless of the availability of the corresponding α-amino acid. This report describes the use of a cinchona alkaloid-catalyzed aza-Henry reaction using bromonitromethane, and the integration of its product with umpolung amide synthesis. The result is a straightforward 3-step protocol beginning from aliphatic aldehydes that provides homologated peptides bearing an aliphatic side chain at the resulting d-α-amino amide.