Cargando…

Effect of Endobronchial Valve Therapy on Pulmonary Perfusion and Ventilation Distribution

INTRODUCTION: Endoscopic lung volume reduction (ELVR) is an emerging therapy for emphysematous COPD. However, any resulting changes in lung perfusion and ventilation remain undetermined. Here, we report ELVR-mediated adaptations in lung perfusion and ventilation, as investigated by means of pulmonar...

Descripción completa

Detalles Bibliográficos
Autores principales: Pizarro, Carmen, Ahmadzadehfar, Hojjat, Essler, Markus, Tuleta, Izabela, Fimmers, Rolf, Nickenig, Georg, Skowasch, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379022/
https://www.ncbi.nlm.nih.gov/pubmed/25822624
http://dx.doi.org/10.1371/journal.pone.0118976
Descripción
Sumario:INTRODUCTION: Endoscopic lung volume reduction (ELVR) is an emerging therapy for emphysematous COPD. However, any resulting changes in lung perfusion and ventilation remain undetermined. Here, we report ELVR-mediated adaptations in lung perfusion and ventilation, as investigated by means of pulmonary scintigraphy. METHODS: In this observational study, we enrolled 26 patients (64.9±9.4 yrs, 57.7% male) with COPD heterogeneous emphysema undergoing ELVR with endobronchial valves (Zephyr, Pulmonx, Inc.). Mean baseline FEV1 and RV were 32.9% and 253.8% predicted, respectively. Lung scintigraphy was conducted prior to ELVR and eight weeks thereafter. Analyses of perfusion and ventilation shifts were performed and complemented by correlation analyses between paired zones. RESULTS: After ELVR, target zone perfusion showed a mean relative reduction of 43.32% (p<0.001), which was associated with a significant decrease in target zone ventilation (p<0.001). Perfusion of the contralateral untreated zone and of the contralateral total lung exhibited significant increases post-ELVR (p = 0.002 and p = 0.005, respectively); both correlated significantly with the corresponding target zone perfusion adaptations. Likewise, changes in target zone ventilation correlated significantly with ventilatory changes in the contralateral untreated zone and the total contralateral lung (Pearson’s r: −0.42, p = 0.04 and Pearson’s r: −0.42, p = 0.03, respectively). These effects were observed in case of clinical responsiveness to ELVR, as assessed by changes in the six-minute walk test distance. DISCUSSION: ELVR induces a relevant decrease in perfusion and ventilation of the treated zone with compensatory perfusional and ventilatory redistribution to the contralateral lung, primarily to the non-concordant, contralateral zone.