Cargando…
X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell
The relevance of micro Laue diffraction tomography (µ-LT) to investigate heterogeneous polycrystalline materials has been studied. For this purpose, a multiphase solid oxide fuel cell (SOFC) electrode composite made of yttria-stabilized zirconia and nickel oxide phases, with grains of about a few mi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379434/ https://www.ncbi.nlm.nih.gov/pubmed/25844076 http://dx.doi.org/10.1107/S1600576715002447 |
_version_ | 1782364184708644864 |
---|---|
author | Ferreira Sanchez, Dario Villanova, Julie Laurencin, Jérôme Micha, Jean-Sébastien Montani, Alexandre Gergaud, Patrice Bleuet, Pierre |
author_facet | Ferreira Sanchez, Dario Villanova, Julie Laurencin, Jérôme Micha, Jean-Sébastien Montani, Alexandre Gergaud, Patrice Bleuet, Pierre |
author_sort | Ferreira Sanchez, Dario |
collection | PubMed |
description | The relevance of micro Laue diffraction tomography (µ-LT) to investigate heterogeneous polycrystalline materials has been studied. For this purpose, a multiphase solid oxide fuel cell (SOFC) electrode composite made of yttria-stabilized zirconia and nickel oxide phases, with grains of about a few micrometres in size, has been analyzed. In order to calibrate the Laue data and to test the technique’s sensitivity limits, a monocrystalline germanium sample of about 8 × 4 µm in cross-section size has also been studied through µ-LT. The SOFC and germanium Laue diffraction pattern analyses are compared and discussed. The indexing procedure has been successfully applied for the analysis of the germanium Laue data, and the depth-resolved two-dimensional cartographies of the full deviatoric strain tensor components were obtained. The development and application of an original geometrical approach to analyze the SOFC Laue data allowed the authors to resolve grains with sizes of about 3 µm and to identify their individual Laue patterns; by indexing those Laue patterns, the crystalline phases and orientations of most of the grains identified through the geometrical approach could be resolved. |
format | Online Article Text |
id | pubmed-4379434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-43794342015-04-03 X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell Ferreira Sanchez, Dario Villanova, Julie Laurencin, Jérôme Micha, Jean-Sébastien Montani, Alexandre Gergaud, Patrice Bleuet, Pierre J Appl Crystallogr Research Papers The relevance of micro Laue diffraction tomography (µ-LT) to investigate heterogeneous polycrystalline materials has been studied. For this purpose, a multiphase solid oxide fuel cell (SOFC) electrode composite made of yttria-stabilized zirconia and nickel oxide phases, with grains of about a few micrometres in size, has been analyzed. In order to calibrate the Laue data and to test the technique’s sensitivity limits, a monocrystalline germanium sample of about 8 × 4 µm in cross-section size has also been studied through µ-LT. The SOFC and germanium Laue diffraction pattern analyses are compared and discussed. The indexing procedure has been successfully applied for the analysis of the germanium Laue data, and the depth-resolved two-dimensional cartographies of the full deviatoric strain tensor components were obtained. The development and application of an original geometrical approach to analyze the SOFC Laue data allowed the authors to resolve grains with sizes of about 3 µm and to identify their individual Laue patterns; by indexing those Laue patterns, the crystalline phases and orientations of most of the grains identified through the geometrical approach could be resolved. International Union of Crystallography 2015-02-21 /pmc/articles/PMC4379434/ /pubmed/25844076 http://dx.doi.org/10.1107/S1600576715002447 Text en © Dario Ferreira Sanchez et al. 2015 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Ferreira Sanchez, Dario Villanova, Julie Laurencin, Jérôme Micha, Jean-Sébastien Montani, Alexandre Gergaud, Patrice Bleuet, Pierre X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell |
title | X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell
|
title_full | X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell
|
title_fullStr | X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell
|
title_full_unstemmed | X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell
|
title_short | X-ray micro Laue diffraction tomography analysis of a solid oxide fuel cell
|
title_sort | x-ray micro laue diffraction tomography analysis of a solid oxide fuel cell |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379434/ https://www.ncbi.nlm.nih.gov/pubmed/25844076 http://dx.doi.org/10.1107/S1600576715002447 |
work_keys_str_mv | AT ferreirasanchezdario xraymicrolauediffractiontomographyanalysisofasolidoxidefuelcell AT villanovajulie xraymicrolauediffractiontomographyanalysisofasolidoxidefuelcell AT laurencinjerome xraymicrolauediffractiontomographyanalysisofasolidoxidefuelcell AT michajeansebastien xraymicrolauediffractiontomographyanalysisofasolidoxidefuelcell AT montanialexandre xraymicrolauediffractiontomographyanalysisofasolidoxidefuelcell AT gergaudpatrice xraymicrolauediffractiontomographyanalysisofasolidoxidefuelcell AT bleuetpierre xraymicrolauediffractiontomographyanalysisofasolidoxidefuelcell |