Cargando…
DISOPRED3: precise disordered region predictions with annotated protein-binding activity
Motivation: A sizeable fraction of eukaryotic proteins contain intrinsically disordered regions (IDRs), which act in unfolded states or by undergoing transitions between structured and unstructured conformations. Over time, sequence-based classifiers of IDRs have become fairly accurate and currently...
Autores principales: | Jones, David T., Cozzetto, Domenico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380029/ https://www.ncbi.nlm.nih.gov/pubmed/25391399 http://dx.doi.org/10.1093/bioinformatics/btu744 |
Ejemplares similares
-
Predicting human protein function with multi-task deep neural networks
por: Fa, Rui, et al.
Publicado: (2018) -
FFPred 3: feature-based function prediction for all Gene Ontology domains
por: Cozzetto, Domenico, et al.
Publicado: (2016) -
Protein function prediction by massive integration of evolutionary analyses and multiple data sources
por: Cozzetto, Domenico, et al.
Publicado: (2013) -
FFPred 2.0: Improved Homology-Independent Prediction of Gene Ontology Terms for Eukaryotic Protein Sequences
por: Minneci, Federico, et al.
Publicado: (2013) -
Using deep maxout neural networks to improve the accuracy of function prediction from protein interaction networks
por: Wan, Cen, et al.
Publicado: (2019)