Cargando…

Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data

The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-...

Descripción completa

Detalles Bibliográficos
Autor principal: Sansom, Robert S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380037/
https://www.ncbi.nlm.nih.gov/pubmed/25432893
http://dx.doi.org/10.1093/sysbio/syu093
_version_ 1782364279127670784
author Sansom, Robert S.
author_facet Sansom, Robert S.
author_sort Sansom, Robert S.
collection PubMed
description The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g., appendage, tentacle, or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data have not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (two entries replaced, 6% of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic frameworks to support their interpretation.
format Online
Article
Text
id pubmed-4380037
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-43800372015-04-15 Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data Sansom, Robert S. Syst Biol Regular Articles The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g., appendage, tentacle, or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data have not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (two entries replaced, 6% of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic frameworks to support their interpretation. Oxford University Press 2015-03 2014-11-27 /pmc/articles/PMC4380037/ /pubmed/25432893 http://dx.doi.org/10.1093/sysbio/syu093 Text en © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Regular Articles
Sansom, Robert S.
Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data
title Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data
title_full Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data
title_fullStr Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data
title_full_unstemmed Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data
title_short Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data
title_sort bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data
topic Regular Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380037/
https://www.ncbi.nlm.nih.gov/pubmed/25432893
http://dx.doi.org/10.1093/sysbio/syu093
work_keys_str_mv AT sansomroberts biasandsensitivityintheplacementoffossiltaxaresultingfrominterpretationsofmissingdata