Cargando…
Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data
The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380037/ https://www.ncbi.nlm.nih.gov/pubmed/25432893 http://dx.doi.org/10.1093/sysbio/syu093 |
_version_ | 1782364279127670784 |
---|---|
author | Sansom, Robert S. |
author_facet | Sansom, Robert S. |
author_sort | Sansom, Robert S. |
collection | PubMed |
description | The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g., appendage, tentacle, or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data have not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (two entries replaced, 6% of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic frameworks to support their interpretation. |
format | Online Article Text |
id | pubmed-4380037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-43800372015-04-15 Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data Sansom, Robert S. Syst Biol Regular Articles The utility of fossils in evolutionary contexts is dependent on their accurate placement in phylogenetic frameworks, yet intrinsic and widespread missing data make this problematic. The complex taphonomic processes occurring during fossilization can make it difficult to distinguish absence from non-preservation, especially in the case of exceptionally preserved soft-tissue fossils: is a particular morphological character (e.g., appendage, tentacle, or nerve) missing from a fossil because it was never there (phylogenetic absence), or just happened to not be preserved (taphonomic loss)? Missing data have not been tested in the context of interpretation of non-present anatomy nor in the context of directional shifts and biases in affinity. Here, complete taxa, both simulated and empirical, are subjected to data loss through the replacement of present entries (1s) with either missing (?s) or absent (0s) entries. Both cause taxa to drift down trees, from their original position, toward the root. Absolute thresholds at which downshift is significant are extremely low for introduced absences (two entries replaced, 6% of present characters). The opposite threshold in empirical fossil taxa is also found to be low; two absent entries replaced with presences causes fossil taxa to drift up trees. As such, only a few instances of non-preserved characters interpreted as absences will cause fossil organisms to be erroneously interpreted as more primitive than they were in life. This observed sensitivity to coding non-present morphology presents a problem for all evolutionary studies that attempt to use fossils to reconstruct rates of evolution or unlock sequences of morphological change. Stem-ward slippage, whereby fossilization processes cause organisms to appear artificially primitive, appears to be a ubiquitous and problematic phenomenon inherent to missing data, even when no decay biases exist. Absent characters therefore require explicit justification and taphonomic frameworks to support their interpretation. Oxford University Press 2015-03 2014-11-27 /pmc/articles/PMC4380037/ /pubmed/25432893 http://dx.doi.org/10.1093/sysbio/syu093 Text en © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Regular Articles Sansom, Robert S. Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data |
title | Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data |
title_full | Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data |
title_fullStr | Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data |
title_full_unstemmed | Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data |
title_short | Bias and Sensitivity in the Placement of Fossil Taxa Resulting from Interpretations of Missing Data |
title_sort | bias and sensitivity in the placement of fossil taxa resulting from interpretations of missing data |
topic | Regular Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380037/ https://www.ncbi.nlm.nih.gov/pubmed/25432893 http://dx.doi.org/10.1093/sysbio/syu093 |
work_keys_str_mv | AT sansomroberts biasandsensitivityintheplacementoffossiltaxaresultingfrominterpretationsofmissingdata |