Cargando…
HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus
Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. While a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380233/ https://www.ncbi.nlm.nih.gov/pubmed/25818806 http://dx.doi.org/10.1038/ncomms7660 |
_version_ | 1782364304734945280 |
---|---|
author | Malikov, Viacheslav da Silva, Eveline Santos Jovasevic, Vladimir Bennett, Geoffrey de Souza Aranha Vieira, Daniel A. Schulte, Bianca Diaz-Griffero, Felipe Walsh, Derek Naghavi, Mojgan H. |
author_facet | Malikov, Viacheslav da Silva, Eveline Santos Jovasevic, Vladimir Bennett, Geoffrey de Souza Aranha Vieira, Daniel A. Schulte, Bianca Diaz-Griffero, Felipe Walsh, Derek Naghavi, Mojgan H. |
author_sort | Malikov, Viacheslav |
collection | PubMed |
description | Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. While a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bidirectional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement toward the nucleus. |
format | Online Article Text |
id | pubmed-4380233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-43802332015-09-30 HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus Malikov, Viacheslav da Silva, Eveline Santos Jovasevic, Vladimir Bennett, Geoffrey de Souza Aranha Vieira, Daniel A. Schulte, Bianca Diaz-Griffero, Felipe Walsh, Derek Naghavi, Mojgan H. Nat Commun Article Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. While a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bidirectional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement toward the nucleus. 2015-03-30 /pmc/articles/PMC4380233/ /pubmed/25818806 http://dx.doi.org/10.1038/ncomms7660 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Malikov, Viacheslav da Silva, Eveline Santos Jovasevic, Vladimir Bennett, Geoffrey de Souza Aranha Vieira, Daniel A. Schulte, Bianca Diaz-Griffero, Felipe Walsh, Derek Naghavi, Mojgan H. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus |
title | HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus |
title_full | HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus |
title_fullStr | HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus |
title_full_unstemmed | HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus |
title_short | HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus |
title_sort | hiv-1 capsids bind and exploit the kinesin-1 adaptor fez1 for inward movement to the nucleus |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380233/ https://www.ncbi.nlm.nih.gov/pubmed/25818806 http://dx.doi.org/10.1038/ncomms7660 |
work_keys_str_mv | AT malikovviacheslav hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT dasilvaevelinesantos hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT jovasevicvladimir hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT bennettgeoffrey hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT desouzaaranhavieiradaniela hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT schultebianca hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT diazgrifferofelipe hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT walshderek hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus AT naghavimojganh hiv1capsidsbindandexploitthekinesin1adaptorfez1forinwardmovementtothenucleus |