Cargando…

A positioned +1 nucleosome enhances promoter-proximal pausing

Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin d...

Descripción completa

Detalles Bibliográficos
Autores principales: Jimeno-González, Silvia, Ceballos-Chávez, María, Reyes, José C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381062/
https://www.ncbi.nlm.nih.gov/pubmed/25735750
http://dx.doi.org/10.1093/nar/gkv149
Descripción
Sumario:Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5′-3′ exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression.