Cargando…

Inferring positive selection in humans from genomic data

Adaptation can be described as an evolutionary process that leads to an adjustment of the phenotypes of a population to their environment. In the classical view, new mutations can introduce novel phenotypic features into a population that leave footprints in the genome after fixation, such as select...

Descripción completa

Detalles Bibliográficos
Autores principales: Wollstein, Andreas, Stephan, Wolfgang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381672/
https://www.ncbi.nlm.nih.gov/pubmed/25834723
http://dx.doi.org/10.1186/s13323-015-0023-1
Descripción
Sumario:Adaptation can be described as an evolutionary process that leads to an adjustment of the phenotypes of a population to their environment. In the classical view, new mutations can introduce novel phenotypic features into a population that leave footprints in the genome after fixation, such as selective sweeps. Alternatively, existing genetic variants may become beneficial after an environmental change and increase in frequency. Although they may not reach fixation, they may cause a shift of the optimum of a phenotypic trait controlled by multiple loci. With the availability of polymorphism data from various organisms, including humans and chimpanzees, it has become possible to detect molecular evidence of adaptation and to estimate the strength and target of positive selection. In this review, we discuss the two competing models of adaptation and suitable approaches for detecting the footprints of positive selection on the molecular level.