Cargando…

Effects of Individual Health Topic Familiarity on Activity Patterns During Health Information Searches

BACKGROUND: Non-medical professionals (consumers) are increasingly using the Internet to support their health information needs. However, the cognitive effort required to perform health information searches is affected by the consumer’s familiarity with health topics. Consumers may have different le...

Descripción completa

Detalles Bibliográficos
Autores principales: Puspitasari, Ira, Moriyama, Koichi, Fukui, Ken–ichi, Numao, Masayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Gunther Eysenbach 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381811/
https://www.ncbi.nlm.nih.gov/pubmed/25783222
http://dx.doi.org/10.2196/medinform.3803
Descripción
Sumario:BACKGROUND: Non-medical professionals (consumers) are increasingly using the Internet to support their health information needs. However, the cognitive effort required to perform health information searches is affected by the consumer’s familiarity with health topics. Consumers may have different levels of familiarity with individual health topics. This variation in familiarity may cause misunderstandings because the information presented by search engines may not be understood correctly by the consumers. OBJECTIVE: As a first step toward the improvement of the health information search process, we aimed to examine the effects of health topic familiarity on health information search behaviors by identifying the common search activity patterns exhibited by groups of consumers with different levels of familiarity. METHODS: Each participant completed a health terminology familiarity questionnaire and health information search tasks. The responses to the familiarity questionnaire were used to grade the familiarity of participants with predefined health topics. The search task data were transcribed into a sequence of search activities using a coding scheme. A computational model was constructed from the sequence data using a Markov chain model to identify the common search patterns in each familiarity group. RESULTS: Forty participants were classified into L1 (not familiar), L2 (somewhat familiar), and L3 (familiar) groups based on their questionnaire responses. They had different levels of familiarity with four health topics. The video data obtained from all of the participants were transcribed into 4595 search activities (mean 28.7, SD 23.27 per session). The most frequent search activities and transitions in all the familiarity groups were related to evaluations of the relevancy of selected web pages in the retrieval results. However, the next most frequent transitions differed in each group and a chi-squared test confirmed this finding (P<.001). Next, according to the results of a perplexity evaluation, the health information search patterns were best represented as a 5-gram sequence pattern. The most common patterns in group L1 were frequent query modifications, with relatively low search efficiency, and accessing and evaluating selected results from a health website. Group L2 performed frequent query modifications, but with better search efficiency, and accessed and evaluated selected results from a health website. Finally, the members of group L3 successfully discovered relevant results from the first query submission, performed verification by accessing several health websites after they discovered relevant results, and directly accessed consumer health information websites. CONCLUSIONS: Familiarity with health topics affects health information search behaviors. Our analysis of state transitions in search activities detected unique behaviors and common search activity patterns in each familiarity group during health information searches.